

# Final Lithium Experiments on CDX-U and LTX Status

R. Majeski, R. Kaita, H. Kugel, T. Gray, D. Mansfield, J. Spaleta, J. Timberlake, L. Zakharov, *Princeton Plasma Physics Laboratory*, *Princeton*, *NJ*, *USA* 

V. Soukhanovskii, Lawrence Livermore National Laboratory, Livermore, CA, USA

R. Maingi, Oak Ridge National Laboratory, Oak Ridge, TN, USA

R. Doerner, University of California at San Diego, CA, USA



#### Outline



- CDX-U lithium and fueling systems for 2005
- Electron beam evaporation system
  - Enables deposition of 1000Å wall coatings in < 5 min.
  - Liquid lithium has very high power density capabilities
- Particle confinement time and recycling
  - ~30% recycling coefficient (record for magnetically confined plasmas)
- New magnetics, equilibrium reconstruction
- Plasma confinement
  - Up to an order of magnitude increase in confinement times
  - Exceeds ITER98P(y,1) scaling by  $2 4 \times$ 
    - » Record confinement enhancement for an ohmic tokamak
- LTX status
- Where is this headed?



### Three lithium, two gas fueling systems available CDX-U



CDX-U:

$$R_0 = 34 \text{ cm} \quad \kappa \le 1.6$$

$$R_0 = 34 \text{ cm}$$
  $\kappa \le 1.6$   $I_P \le 80 \text{ kA}$   $a = 22 \text{ cm}$   $R_T(0)2.2 \text{ kG}$   $\tau_{disch} < 25 \text{ msec}$ 

$$T_e(0) \sim 100 \text{ eV}$$
  
 $n_e(0) < 6x 10^{19} \text{ m}^{-3}$ 



- Lithium tray limiter
  - 300 g of lithium in a toroidal tray
- Electron beam high heat flux, lithium coating system
  - Used lithium tray inventory as source

Resistively heated lithium evaporator

- NSTX prototype
- Gas injection systems
  - Wall mounted piezo valve
  - Supersonic gas injector

⇒Up to 1000Å of lithium coatings between discharges ⇒600 cm<sup>2</sup> of liquid lithium forms lower limiter

PFC Workshop 2/28/06 - 3/2/06 San Diego, CA

6 mm deep



#### High power density electron gun intended to "spot heat" lithium



- Objective: 1000Å lithium wall coatings
  - TF + VF used to guide beam
    - » Can be pulsed to 600G; typ. 200 G
  - Lithium tray fill (~3 mm deep)used as evaporation target.
    - » Lithium area  $\sim 600 \text{ cm}^2 >> \text{beam spot}$
- Spot heating proved impossible

Converted commercial gun

- 4 kV, 300 400 mA typ.
- ◆ 300 400 sec. run typical
- Uncooled (Tantalum, Macor, SS)

CDX-U

- Total power modest: <1.6 kW</li>
- Power density high: < 60 MW/m<sup>2</sup>



### ⇒Electron beam heating induces flow ⇒Flow very effectively inhibits localized heating

CDX-U

- ◆ IR camera movie of 25 sec. of a 300 sec. beam run
- ◆ Yellow denotes +55°C, red denotes +110°C
- Field ramps from 200 G to 400G 10 sec into clip
- ◆ If only conduction were active, area under beam would heat to **1400°C** in 0.1 sec.

#### Centerstack



◆Localized heat deposition (and/or beam current) induces lithium flows

—Marangoni effect; temperature-dependent surface tension





Entire tray heated, produced lithium wall coatings



# Full wall coatings + partial liquid lithium tray produced very high particle pumping rates



- Effective particle confinement time  $\tau_p^* = \tau_p/(1-R)$ , R = recycling coefficient, reduced dramatically with liquid lithium limiters and wall coatings
  - $-\tau_p^*$  too long to measure in the complete absence of lithium wall coatings



- Particle pumping rate in CDX-U is  $1 2 \times 10^{21}$  part/sec.
- Sufficient to pump a TFTR supershot
  - But the active wall area in CDX-U is only 0.4 m<sup>2</sup>
  - ~Two orders of magnitude less than the active wall area in TFTR during lithium wall conditioning.
  - Liquid lithium also eliminated all traces of water
    - Oxygen vastly reduced
       Carbon, other impurities also reduced

PFC Workshop 2/28/06 - 3/2/06 San Diego, CA

## Recycling coefficient estimated at ~0.3 for liquid lithium operation

- $\bullet$  D<sub> $\alpha$ </sub> emission at the centerstack
  - Primary plasma contact



PFC Workshop 2/28/06 - 3/2/06 San Diego, CA

- $\sim 3 \times$  reduction in  $D_{\alpha}$  for liquid lithium operation
- Edge electron temperature:
  - − ~28 eV with lithium
  - $\sim 20 \text{ eV}$  without
    - » ∼17% correction in emission rate

CDX-U

- ◆ Edge electron density was ~1×10<sup>18</sup> m<sup>-3</sup> under both conditions
  - Bare tray: deuterium prefill only
  - Liquid lithium operation required
     5-8 × increase in gas fueling
- ◆ Lithium reduces recycling coefficient from ~1 to ~0.3
  - Overestimate (background light)
- Lowest recycling coefficient ever measured for a magnetically confined plasma

### Impurity ion temperature increases by 3× with lithium



- Carbon impurity level (signal magnitude) drops by over an order of magnitude
- No profile information
- No Thomson scattering







## New magnetic diagnostics permit reconstructions, measurement of $\tau_{\rm F}$



- Magnetic probes, compensated diamagnetic loop added
- Equilibrium and Stability Code (ESC) modified to include vessel eddy currents
  - Response function approach
  - Calibrated with "step function" coil pulses
  - Compensation for nonaxisymmetric eddy currents



### Measured confinement times exceed scalings





- $61kA < I_p < 78kA$
- ◆ 2.1 kG
- Identical loop voltage waveforms
- $0.5 < \overline{n_e} < 1 \times 10^{19} \,\mathrm{m}^{-3}$

- ◆ ITER98P(y,1) included START data (slightly larger "small" ST)
- Confinement in CDX improved by 6× or more with lithium wall coatings, partial liquid lithium limiter
- Exceeds scaling by  $2-3\times$
- Largest increase in ohmic tokamak confinement ever observed

## Lithium discharges exhibit long confinement times, very low loop voltage CDX-U



PFC Workshop 2/28/06 - 3/2/06 San Diego, CA

- Reconstruction of centerstack limited plasma from ESC
- Total coating of 6500 Å of lithium had been applied during preceding 90 min.
  - 900 Å applied 1 min. before discharge
- $\tau_E$  for this discharge exceeded 9 msec
  - Not shown in scaling plot
  - Exceeds ITER98 scaling by  $> 4 \times$
  - Corresponding global  $\chi_E$  is  $5m^2/sec$
- ◆ Surface voltage at current peak < 0.5V
  - 300 J stored energy
  - $-L_i \sim 0.7$
  - Very low ohmic power input: 32 kW
  - Low ohmic power a future concern
    - » Lithium area 600 cm<sup>2</sup> for the discharges for which reconstructions are available
    - » Loop voltage was *lower* with a full (2000 cm<sup>2</sup>) tray (2003, 2004)

### LTX will have 5 m<sup>2</sup> wall of liquid lithium







 Last shell segment coming out of the brazing furnace

- ◆ CAD view of shell in vessel
- First plasma in late CY2006





# Absorbing walls with core fueling may produce *very* long reactor confinement times

- Flat temperature profiles
  - No conduction losses
- Energy confinement time will be determined by particle confinement
- Particle confinement is always determined by the best confined species
- ◆ No temperature gradient drivers for ITG, other turbulence
  - No "profile consistency" for density profile
  - Particle transport in present machines may be driven by thermal instabilities
- Core fueled, nonrecycling lithium tokamak may have neoclassical confinement

$$D_{neo} \approx 0.016 \frac{n_{20}}{B_p^2 \sqrt{T_{i,10}}} \sqrt{\frac{a}{R}}$$
 (m<sup>2</sup>/sec)

⇒  $\tau_E \sim \tau_p \sim \frac{a^2}{D_{neo}}$ .  $\tau_E > 10$  seconds for Component Test Facility with  $a \sim 0.4$  m ⇒ CTF requires only 10 MW of NBI at 45 keV

$$-T_e=T_i=15 \text{ keV}$$

Driven - no alpha confinement



# Lithium tokamak leads to a simple, compact Component Test Facility for reactor R&D





CTF with TF, PF and blanket comparable in volume to present-day light water fission reactor pressure vessel (~100 m<sup>3</sup>)

- PFC: 0.1-0.5 mm "creeping" lithium film in porous moly or tungsten surface
  - Required replacement rate:~10 liter/hour (flow rate < 1 cm/sec) for ITER</li>
- Small size = access for core fueling with low voltage NBI
- $R_0=1.25$ m, a=0.75m, A=1.66,  $\kappa = 2, 3$ T, 11 MA
- At 40% β, P<sub>fusion</sub>=400 MW (=ITER)
  - Plasma volume = 26 m<sup>3</sup>
  - 3% of ITER
  - Manageable tritium requirements for reactor development



### Summary



- In 2005 CDX-U simultaneously employed 600 cm<sup>2</sup> liquid lithium limiter + 1000 Å between-shots lithium wall coatings
- Simple, 3 mm deep liquid lithium pool was very effective at redistributing extremely high power density heat loads (~50 MW/m², 300 s.)
- Particle removal rates produced in CDX-U sufficient to pump a TFTR supershot
- ◆ Recycling coefficients of ~30% are the lowest ever achieved in a magnetically confined plasma
- ◆ 6-10 × enhancement in low recycling discharge confinement times over high recycling case
  - Largest increase in ohmic tokamak confinement ever observed
  - Empirical tokamak scalings appear irrelevant to lithium tokamaks
- CDX-U now being disassembled, converted to LTX
  - 25× increase in liquid lithium surface over best-case CDX-U
- ◆ Leads to a lithium walled CTF with a porous-metal lithium-filled PFC
  - Porous metal walls with slow flow are presently under development via Phase I and Phase II SBIRs

